3 research outputs found

    Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

    Full text link
    We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps

    Misbehaviour Prediction for Autonomous Driving Systems

    Full text link
    Deep Neural Networks (DNNs) are the core component of modern autonomous driving systems. To date, it is still unrealistic that a DNN will generalize correctly in all driving conditions. Current testing techniques consist of offline solutions that identify adversarial or corner cases for improving the training phase, and little has been done for enabling online healing of DNN-based vehicles. In this paper, we address the problem of estimating the confidence of DNNs in response to unexpected execution contexts with the purpose of predicting potential safety-critical misbehaviours such as out of bound episodes or collisions. Our approach SelfOracle is based on a novel concept of self-assessment oracle, which monitors the DNN confidence at runtime, to predict unsupported driving scenarios in advance. SelfOracle uses autoencoder and time-series-based anomaly detection to reconstruct the driving scenarios seen by the car, and determine the confidence boundary of normal/unsupported conditions. In our empirical assessment, we evaluated the effectiveness of different variants of SelfOracle at predicting injected anomalous driving contexts, using DNN models and simulation environment from Udacity. Results show that, overall, SelfOracle can predict 77% misbehaviours, up to 6 seconds in advance, outperforming the online input validation approach of DeepRoad by a factor almost equal to 3.Comment: 11 page
    corecore